Recognition of gestures in Arabic sign language using neuro-fuzzy systems

نویسندگان

  • Omar M. Al-Jarrah
  • Alaa Halawani
چکیده

Hand gestures play an important role in communication between people during their daily lives. But the extensive use of hand gestures as a mean of communication can be found in sign languages. Sign language is the basic communication method between deaf people. A translator is usually needed when an ordinary person wants to communicate with a deaf one. The work presented in this paper aims at developing a system for automatic translation of gestures of the manual alphabets in the Arabic sign language. In doing so, we have designed a collection of ANFIS networks, each of which is trained to recognize one gesture. Our system does not rely on using any gloves or visual markings to accomplish the recognition job. Instead, it deals with images of bare hands, which allows the user to interact with the system in a natural way. An image of the hand gesture is processed and converted into a set of features that comprises of the lengths of some vectors which are selected to span the fingertips’ region. The extracted features are rotation, scale, and translation invariat, which makes the system more flexible. The subtractive clustering algorithm and the least-squares estimator are used to identify the fuzzy inference system, and the training is achieved using the hybrid learning algorithm. Experiments revealed that our system was able to recognize the 30 Arabic manual alphabets with an accuracy of 93.55%.  2001 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Detection and Recognition of Multi-language Traffic Sign Context by Intelligent Driver Assistance Systems

Design of a new intelligent driver assistance system based on traffic sign detection with Persian context is concerned in this paper. The primary aim of this system is to increase the precision of drivers in choosing their path with regard to traffic signs. To achieve this goal, a new framework that implements fuzzy logic was used to detect traffic signs in videos captured along a highway f...

متن کامل

A Model For Real Time Sign Language Recognition System

This paper proposes a real time approach to recognize gestures of sign language. The input video to a sign language recognition system is made independent of the environment in which signer is present. Active contours are used to segment and track the non-rigid hands and head of the signer. The energy minimization of active contours is accomplished by using object color, texture, boundary edge ...

متن کامل

Isolated Arabic Handwritten Character Recognition: A Survey

Offline Arabic handwriting character recognition (AHCR) systems are very important since they make life easier for governments, researchers and scholars who are dealing with Arabic language in education, documentation and security. A widening use of the Arabic script in countries that deals with the Arabic language and countries that use the Arabic script in their languages such as Persian and ...

متن کامل

Arabic sign Language Recognition Using Neural Network And Graph Matching Techniques

Sign Language Recognition (SLR) is the most structured field in gesture recognition applications, such that each gesture has assigned a well-defined meaning. SLR can be defined as a translation system, which translates the signs, performed by deaf and dump people to the natural language. The proposed system aims to recognize Arabic sign language (ASL) and converts it to the natural Arabic langu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artif. Intell.

دوره 133  شماره 

صفحات  -

تاریخ انتشار 2001